Ca, Sr, and Ba Identify Distinct Regulatory Sites on Adenylyl Cyclase (AC) Types VI and VIII and Consolidate the Apposition of Capacitative Cation Entry Channels and Ca-sensitive ACs*

نویسنده

  • Dermot M. F. Cooper
چکیده

Ca-sensitive adenylyl cyclases may act as early integrators of the two major second messenger-signaling pathways mediated by Ca and cAMP. Ca stimulation of adenylyl cyclase type I (ACI) and adenylyl cyclase type VIII (ACVIII) is mediated by calmodulin and the site on these adenylyl cyclases that interacts with calmodulin has been defined. By contrast, the mechanism whereby Ca inhibits adenylyl cyclase type V (ACV) and adenylyl cyclase type VI (ACVI) is unknown. In this study, Ca, Sr, and Ba were compared to probe the involvement of E-F hand-like domains in both Ca stimulation and inhibition of ACVIII and ACVI, respectively. HEK 293 cells transfected with ACVIII cDNA and C6–2B glioma cells (where the endogenous adenylyl cyclases is predominantly ACVI) were used to compare the effects of these three cations in in vitro and in vivo measurements. The in vitro data identified two Ca regulatory sites for both ACVIII and ACVI. Strikingly different potency series for these cations at mediating high affinity stimulation and inhibition of ACVIII and ACVI, respectively, effectively rule out the possibility that calmodulin or proteins utilizing similar Ca-binding motifs mediate inhibition of ACVI. On the other hand, the low affinity inhibition that is common to both ACVIII and ACVI showed virtually identical potency profiles for the IIa cation series, indicating a common site of action. Remarkably, whereas Sr was rather ineffective at regulating these cyclases (particularly ACVI) in vitro, adequate concentrations accumulated in the vicinity of these enzymes as a consequence of capacitative cation entry to partially regulate both of these activities in vivo. This latter finding consolidates earlier observations that Ca-sensitive adenylyl cyclases detect and respond to capacitative cation entry rather than global cytosolic cation concentrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the Ca-inhibitable Adenylyl Cyclase Type VI by Capacitative Ca Entry Requires Localization in Cholesterol-rich

The endogenous Ca-inhibitable adenylyl cyclase type VI of C6-2B glioma cells is regulated only by capacitative Ca entry and not by a substantial elevation of [Ca]i from either intracellular stores or via ionophoremediated Ca entry (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149–1155; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9...

متن کامل

Direct demonstration of discrete Ca2+ microdomains associated with different isoforms of adenylyl cyclase.

Ca(2+)-sensitive adenylyl cyclases (ACs) orchestrate dynamic interplay between Ca(2+) and cAMP that is a crucial feature of cellular homeostasis. Significantly, these ACs are highly selective for capacitative Ca(2+) entry (CCE) over other modes of Ca(2+) increase. To directly address the possibility that these ACs reside in discrete Ca(2+) microdomains, we tethered a Ca(2+) sensor, GCaMP2, to t...

متن کامل

Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8.

Capacitative Ca(2+) entry (CCE), which occurs through the plasma membrane as a result of Ca(2+) store depletion, is mediated by stromal interacting molecule 1 (STIM1), a sensor of intracellular Ca(2+) store content, and the pore-forming component Orai1. However, additional factors, such as C-type transient receptor potential (TRPC) channels, may also participate in the CCE apparatus. To explore...

متن کامل

Capacitative and 1-oleyl-2-acetyl-sn-glycerol-activated Ca(2+) entry distinguished using adenylyl cyclase type 8.

Although the molecular identity of capacitative Ca(2+) entry (CCE) channels remains elusive, transient receptor potential channel (TRPC) family members 3, 6, and 7, which are activated by diacylglycerol (DAG), have been put forward as possible candidates. Because human embryonic kidney (HEK) 293 cells endogenously express these TRP subunits, this cell line is suitable for investigating whether ...

متن کامل

Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles.

Nine membrane-bound mammalian adenylyl cyclases (ACs) have been identified. Type 1 and 8 ACs (AC1 and AC8), which are both expressed in the brain and are stimulated by Ca(2+)/calmodulin (CaM), have discrete neuronal functions. Although the Ca(2+) sensitivity of AC1 is higher than that of AC8, precisely how these two ACs are regulated by Ca(2+)/CaM remains elusive, and the basis for their divers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000